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11 [1] The need has long been recognized to improve
12 predictions of flow and transport in partially saturated
13 heterogeneous soils and fractured rock of the vadose zone
14 for many practical applications, such as remediation of
15 contaminated sites, nuclear waste disposal in geological
16 formations, and climate predictions. Until recently, flow and
17 transport processes in heterogeneous subsurface media with
18 oscillating irregularities were assumed to be random and
19 were not analyzed using methods of nonlinear dynamics.
20 The goals of this paper are to review the theoretical
21 concepts, present the results, and provide perspectives
22 on investigations of flow and transport in unsaturated
23 heterogeneous soils and fractured rock, using the methods
24 of nonlinear dynamics and deterministic chaos. The results of
25 laboratory and field investigations indicate that the nonlinear
26 dynamics of flow and transport processes in unsaturated
27 soils and fractured rocks arise from the dynamic feedback
28 and competition between various nonlinear physical

29processes along with complex geometry of flow paths.
30Although direct measurements of variables characterizing
31the individual flow processes are not technically feasible,
32their cumulative effect can be characterized by analyzing
33time series data using the models and methods of nonlinear
34dynamics and chaos. Identifying flow through soil or
35rock as a nonlinear dynamical system is important for
36developing appropriate short- and long-time predictive
37models, evaluating prediction uncertainty, assessing the
38spatial distribution of flow characteristics from time series
39data, and improving chemical transport simulations.
40Inferring the nature of flow processes through the methods
41of nonlinear dynamics could become widely used in
42different areas of the earth sciences. INDEX TERMS: 5104

43Physical Properties of Rocks: Fracture and flow; 3220

44Mathematical Geophysics: Nonlinear dynamics; 1875 Hydrology:

45Unsaturated zone; 1832 Hydrology: Groundwater transport;
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51 1. INTRODUCTION

53 [2] The intriguingword ‘‘chaos’’ has attracted the attention

54 of many scientists and nonscientists for centuries. Hesiod

55 was probably the first to introduce the word chaos in his

56 Theogony (written in �700 B.C.) as nothing but void,

57 formless matter, infinite space. He appears to associate chaos

58 with the great chasm, as some sort of gap between earth and

59 sky; but chaos also represented the underworld or the earth.

60 The first modern scientific application of the word chaos

61 belongs to Li and Yorke [1975], who described the mathe-

62 matical problem of a time evolution with sensitive depen-

63 dence on initial conditions. Since the pioneering work of Li

64 and Yorke [1975], chaos has been used in the scientific

65 literature not only to define randomness but also to define

66 the characteristics of chaotic dynamics generated by predom-

67 inately deterministic processes. Chaotic dynamics, known

68 popularly as chaos, is among the most fascinating new fields

69 in modern science, reforming our perception of order and

70 pattern in nature [Gleick, 1987]. Chaos theory has become

71a widely applied scientific concept, used in such larger

72constructs as ‘‘complexity theory’’ [Nicolis and Prigogine,

731989], ‘‘complex systems theory,’’ ‘‘synergetics’’ [Haken,

741983], and ‘‘nonlinear dynamics’’ [Abarbanel, 1996]. Non-

75linear dynamics is a fast developing field of physical sciences,

76with a wide variety of applications in such fields as biology

77[e.g., May, 1981; Olsen et al., 1994], physics, chemistry,

78medicine, economics, earth sciences, and geology [e.g.,Hide,

791994]. Chaotic dynamics is one of the fields within nonlinear

80dynamics. The term chaos theory is also used as a popular

81pseudonym for dynamic systems theory [Abraham et al.,

821997]. Note that chaos and turbulence (whichwere often used

83as synonyms in the scientific literature) represent two differ-

84ent types of processes [Haken, 1983].

85[3] Some examples of dynamic systems that display

86nonlinear deterministic chaotic behavior with aperiodic

87and apparently random variability include atmospheric

88[Lorenz, 1963; Nicolis, 1987], geologic [Turcotte, 1997],

89geochemical [Ortoleva, 1994], and geophysical [Dubois,
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90 1998; Read, 2001] processes, avalanches resulting from the

91 perturbation of sandpiles of various sizes [Rosendahl et al.,

92 1993], falling of water droplets [Cheng et al., 1989], river

93 discharge and precipitation [Pasternack, 1999], oxygen

94 isotope concentrations [Nicolis and Prigogine, 1989], vis-

95 cous fingering in porous media [Sililo and Tellam, 2000],

96 oscillatory fluid release during hydrofracturing in geopres-

97 sured zones buried several kilometers in actively subsiding

98 basins [Dewers and Ortoleva, 1994], thermal convection in

99 porous media at large Rayleigh numbers [Himasekhar and

100 Bau, 1986], and instabilities at fluid interfaces [Moore et al.,

101 2002]. It is noteworthy that experimental and theoretical

102 investigations have shown that different physical, biologi-

103 cal, mechanical, and chemical systems exhibit very similar

104 (even universal) patterns, typical for deterministic chaotic

105 systems. Nonetheless, up to now the practical application of

106 chaos theory remains as much an art as a science.

107 [4] For many years the general approach to flow inves-

108 tigations in a fractured environment has been based on

109 using stochastic methods to describe random-looking data

110 sets [e.g., Gelhar, 1993], without considering that deter-

111 ministic chaotic processes could cause apparent randomness

112 of experimentally observed data.

113 [5] In his theoretical analysis of steady groundwater flow

114 in a fully saturated, heterogeneous aquifer (with no disconti-

115 nuities and a particular model for the spatial variability of

116 hydraulic conductivity and based on Darcy’s law), Sposito

117 [1994] demonstrated the absence of chaos for groundwater

118 flow as related to the impossibility of closed flow paths.

119 The possibility of chaos is expected to occur in partially

120 saturated, heterogeneous structured soils and fractured rock

121 with discontinuity effects and drastic differences in perme-

122 ability and flow mechanisms (such as those between high-

123 conductivity flow channels and low-conductivity matrix).

124 [6] The goals of this paper are to review the theoretical

125 concepts, present the results, and provide perspectives on

126 investigations of flow and transport in unsaturated heteroge-

127 neous soils and fractured rock, using the methods of nonlin-

128 ear dynamics and deterministic chaos. The paper is structured

129 as follows: Section 2 presents a review of basic theoretical

130 concepts and models of nonlinear dynamics. Section 3

131 provides an analysis of two key elements generating nonlin-

132 ear dynamic and chaotic processes, geometry and physics of

133 flow, and shows that unsaturated flow processes satisfy the

134 criteria of a chaotic system. Section 4 provides some exam-

135 ples of chaos using pertinent results from laboratory and field

136 infiltration experiments. Finally, section 5 gives concluding

137 remarks and perspectives on using nonlinear dynamics in

138 investigating unsaturated flow processes.

139 2. BACKGROUND OF NONLINEAR DYNAMICS
140 AND CHAOS

141 2.1. Classification of Dynamic Systems
142 and Definitions

143 2.1.1. Types of Dynamic Systems
144 [7] A dynamic system can be defined as a physical

145 system with a time variation of system parameters. Dynamic

146systems are classified into two types: (1) deterministic

147(linear and nonlinear) and (2) stochastic. Deterministic

148systems are driven by a forcing function described explicitly

149to simulate the evolution of the system, implying that each

150state results in its unique consequence

Yt ¼ f Yt�1ð Þ; ð1Þ

152where Yt is the value of the function at a time step t and Yt�1

153is that at a previous time step t � 1; or a deterministic

154system may contain a random component that is not its

155driving force

Yt ¼ f Yt�1ð Þ þ et; ð2Þ

157where et is a random input (shock) function. Stochastic (or

158random) systems are driven by a random force described

159using a probabilistic function, e.g.,

Yt ¼ f Yt�1ð Þ þ pt; ð3Þ

160161where pt is a random variable, being a driving force of the

system at all times t. Time series data obtained from

163measurements of one of the system’s variables can be used

164to infer whether the system is deterministic or stochastic or

165contains the properties of both of them.

166[8] Dynamical systems are also classified as continuous

167and discrete systems. Continuous systems are characterized

168by the rate of change in their components, using a first-order

169differential equation, such as the basic growth/decay expo-

170nential law, implying that the rate of change for a system

171parameter x is proportional to its value

d=dt x tð Þ ¼ ax tð Þ; ð4Þ

173where a > 0 is a growth constant and a < 0 is a decay

174constant. The solution of equation (4) is x(t) = eatxo.

175Discrete systems are characterized by a series of events with

176discrete time intervals, described by difference equations,

177such as the basic growth/decay law stating that the

178relationship between the value x at a time t + 1 is

179proportional to its value at the time t

xtþ1 ¼ axt: ð5Þ

181A dynamic system described by a set of differential

182equations with continuous solutions is called a flow, and a

183system described by a set of difference equations is called a

184map [Tsonis, 1992].

185[9] The term deterministic chaos is used to describe a

186dynamic process with random-looking, erratic data, in

187which the variable x(t) undulates nonperiodically and never

188settles on a constant value and random processes are not a

189dominant part of the system [Moon, 1987; Schuster, 1988;

190Tsonis, 1992]. Although chaotic fluctuations can be de-

191scribed by nonlinear ordinary or partial differential equa-

192tions, which could theoretically be purely deterministic,

193with no random quantities, real physical processes usually

194contain a stochastic (or noise) component [Haken, 1983;

195Kapitaniak, 1988; Yao and Tong, 1994]. A stochastic
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196 chaotic system is a system in which both deterministic and

197 stochastic processes play a significant role in system dy-

198 namics. A combination of deterministic and stochastic

199 processes may result in a system in which deterministic

200 (nonchaotic) processes are interrupted with irregular shocks

201 [Schuster, 1988]. It is important to discriminate whether an

202 irregular behavior is caused by nonlinear deterministic

203 chaotic dynamics or by nonlinear stochastic dynamics

204 [Timmer et al., 2000].

205 2.1.2. Criteria of a Deterministic Chaotic System
206 [10] The physical system may exhibit a deterministic

207 chaotic behavior under the following conditions:

208 [11] 1. The system is dissipative, which, unlike a conser-

209 vative system, is (1) an open system, exchanging energy,

210 matter, and information with the surrounding environment

211 [Prigogine and Stengers, 1997], and (2) characterized by

212 the presence of irreversible processes, disequilibrium, and

213 self-organization, e.g., the ability to organize or arrange the

214 system’s behavior [Nicolis and Prigogine, 1989]. Examples

215 of dissipative systems are electrical circuits, in which some

216 electric and magnetic energy is dissipated in the resistors as

217 the heat, or viscoelastic mechanical systems with friction

218 that causes a loss of energy. One of the essential properties

219 of a dissipative system is fluctuation of system micro-

220 components [Haken, 1983; Nicolis and Prigogine, 1989],

221 which is often observed in physical, chemical, and biolog-

222 ical systems near a critical state, i.e., where the system can

223 change its macroscopic state. (Note that dissipative systems

224 may exhibit monotonic behavior because of volume and

225 time averaging of variables measured to characterize the

226 system.)

227 [12] 2. The system is nonlinear; coupled effects of several

228 nonlinear processes are governed by nonlinear ordinary or

229 partial differential equations with bounded nonperiodic

230 solutions.

231 [13] 3. The system behavior is sensitive to small varia-

232 tions in initial conditions. For example, Figure 1 demon-

233 strates the paths of seven sliding boards down a slope,

234 starting with identical velocities from points spaced at 1-mm

235 intervals. Figure 1 demonstrates that in a chaotic system,

236 nearby states will eventually diverge no matter how small

237 the initial difference is [Lorenz, 1997]. Such a system

238 essentially forgets its initial conditions and cannot exactly

239 repeat its past behavior, so that the information on initial

240 conditions cannot be recovered from later states of the

241 system.

242 [14] 4. Intrinsic properties of the system, not random

243 external factors, cause an irregular, chaotic dynamic for

244 system components. In a deterministic chaotic system, new

245 emergent structures and properties may arise without being

246 affected by externally imposed boundary conditions.

247 [15] Note that the presence of nonlinearity [Acheson,

248 1997] and dissipation [Tsonis, 1992] are insufficient for a

249 system to be chaotic.

250 2.1.3. Routes to Chaos
251 [16] Using the analysis of the phase space trajectories,

252 several types of routes to chaos can be identified: bifurca-

253 tions (period doubling, pitchfork, subtle, catastrophic,

254explosive, symmetric, or asymmetric), intermittency, and

255collapse of quasiperiodicity [Tsonis, 1992; Arnold, 1984].

256Figure 2 demonstrates two types of an intermittency route to

257chaos. Figure 2a gives an example of a signal alternating in

258time between long regular (e.g., laminar) phases and rela-

259tively short irregular (e.g., random or deterministic chaotic)

260bursts, indicating that the system exhibits a discontinuous

261dynamics over time [Schuster, 1988]. Figure 2b presents an

262example of quasiperiodic behavior (shown as phase 1 in

263Figure 2b), alternating with another type (phase 2) of

264quasiperiodicity [Rabinovich and Trubetskov, 1994] (an

265example is demonstrated in section 4.2).

2662.1.4. Feedback and Emergent Systems
267[17] If a process X affects a process Y such that Y in turn

268affects X, the system has feedback. To predict the behavior

269of such a system, both relationships between X and Y and

270between Y and X should be studied simultaneously. A

271typical feature of nonlinear dynamic systems with feed-

272back is the development of some emergent higher-order

273(macroscopic) structures, which might be caused by lower-

274level (local or microscopic) dynamics of the system [Blitz,

2751992; Baas and Emmeche, 1997]. If one assumes that a

Figure 1. The paths of seven sliding boards down a slope,
starting with identical velocities from points spaced at 1-mm
intervals, demonstrating an essential property of chaotic
behavior: Nearby states will eventually diverge no matter
how small the initial difference is [Lorenz, 1997].

XXXXXX Faybishenko: NONLINEAR DYNAMICS IN UNSATURATED FLOW

3 of 30

XXXXXX



276 process depends on interaction of system’s components

277 (e.g., particles), then a new process (developed under new

278 boundary conditions) will map each system’s component

279 to its new distinct value, so that a new process becomes

280 emergent. Thus the interaction of the system’s components

281 (subsystems) creates emerging patterns in the system’s

282 behavior. Emergent structures, in turn, control the macro-

283 scopic behavior of the system. A notion of emergence can

284 also be considered from the point of view of a hierarchical

285 system, in which the emergent patterns on higher levels

286 are arising from those on lower levels of the system.

287 Simple examples of the emergence are the following:

288 (1) Individual molecules do not have temperature or

289 pressure as a whole system, (b) collective oscillations in

290 ecosystems are different from those of processes in plants

291 or soils, and (3) flow and transport in fractured rock on a

292 regional scale are different from those for liquid flow and

293 chemical interactions in fractures and the matrix (on a

294 lower level). The spontaneous emergence of complex and

295 often surprising macroscopic structures could result from

296 the collective behavior of local-scale processes. In a

297 system with collective behavior, macroscopic, spatially

298 averaged, and time-averaged processes evolve indepen-

299 dently, without direct influence on microscopic chaotic

300 dynamics. Chaotic processes, which develop on a small

301 scale and evolve into some kind of collective (volume or

302 time averaged) behavior, can be described using a few

303 variables [Chaté et al., 1996].

304 2.1.5. Instability
305 [18] Instability is the condition of a system easily

306 disturbed by internal or external forces or events and

307 which may not return to its previous condition, such as

308a system with an irreversible hysteresis. Instability is a

309characteristic of a system far from equilibrium, which is

310developed under the influence of both internal and external

311factors.

3122.2. Phase Space Reconstruction of Nonlinear
313Dynamical Systems From Time Series Data

3142.2.1. Phase Space and Attractor
315[19] One of the most powerful techniques for the time

316series analysis is the phase space reconstruction. The phase

317space of a dynamic system is defined as an n-dimensional

318mathematical space with orthogonal coordinates represent-

319ing the n variables needed to specify the instantaneous state

320of the system [Baker and Gollub, 1996]. The trajectories of

321the system’s vector in the n-dimensional phase space evolve

322in time from initial conditions onto the geometrical object

323called an attractor. The attractor is a set of points in a phase

324space toward which nearly all trajectories converge, and the

325attractor describes an ensemble of states of the system. For

326a dynamic process, which is described by a system of

327evolution equations, the coordinates of a phase space are

328state variables or components of the state vector [Moon,

3291987], so that the evolution of a system is described without

330direct time-dependent dynamic variables.

331[20] Different variables can be used as the coordinates to

332graphically construct the attractor in the phase space, which

333provides no explicit relationship of the variable versus time.

334Examples are (1) the relationship between different system

335parameters (e.g., directly measured physical variables such

336as capillary pressure, moisture content, and flow rate) (it is

337said that the attractor is plotted in the parameter space),

338(2) the one-dimensional scalar array [Abarbanel, 1996],

339Xi(t), of one of the physical variables (e.g., time series of

340pressure, temperature, velocity, or saturation array) and its

341first and second derivatives, and (3) the scalar data, Xi(t),

342and the values Xi(t + t) and Xi(t + 2t), separated by a time

343delay, t, between successive measurements (this procedure

344is called a pseudo phase space reconstruction).

345[21] The bounds of the attractor characterize the range of

346system parameters within which the system behaves. Some

347nonlinear dissipative dynamic systems converge toward

348attractors on which the trajectories are aperiodic, i.e.,

349chaotic. Such attractors are called strange, or chaotic,

350attractors. The chaotic attractor has the following properties:

351(1) Adjacent trajectories in the phase space of the attractor

352diverge exponentially with time. (2) The attractor trajecto-

353ries exist in d-dimensions (a minimum of three dimensions

354in the phase space is required for a chaotic attractor to exist.

355(3) Trajectories on the attractor are not closed; that is, a

356single trajectory will never return to an initial point but will

357visit all points of the attractor in infinite time.

358[22] To illustrate the difference between the attractors for

359deterministic chaotic and random systems, Figure 3 presents

360three three-dimensional (3-D) attractors in a pseudo phase

361space, using the relationships between the value of the time-

362varying function at time t and its values at times t + t and

363t + 2t. Figures 3a and 3b demonstrate a deterministic

364chaotic time series and the attractor, respectively, for the

Figure 2. Examples of time series data exhibiting different
types of an intermittency route to chaos: (a) a signal
alternates between laminar (monotonic) phases and rela-
tively short chaotic bursts [Schuster, 1988] and (b) a signal
alternates between the long-term quasiperiodic fluctuations
(phase 1) and short-term (phase 2) fluctuations (called a
collapse of quasiperiodicity [Rabinovich and Trubetskov,
1994]).
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365 solution of a simple exponential function (see equation (16)

366 in section 2.3.2). Figures 3c and 3d show that a time series

367 of the well-known deterministic chaotic Lorenz model has

368 an attractor with a specific twisted loop pattern. Figures 3e

369 and 3f illustrate that for a random function the attractor

370 covers the whole three-dimensional phase space. It is

371 intuitively apparent from Figure 3f that the unstructured

372 scatter of the points, which make up the attractor, character-

373 izes the contribution of a random component. An analysis of

374 a nonlinear dynamical system, using one-dimensional

375 observations of a scalar signal, includes the determination

376 of several time series and diagnostic parameters of chaos

377 [Abarbanel, 1996].

378 2.2.2. Time Domain Analysis
379 [23] Fourier transformation is a conventional method of

380 analyzing time series data to determine the power (mean

381 square amplitude) as a function of frequency. Periodic and

382 quasiperiodic data produce a few dominant peaks in the

383 spectrum, while deterministic chaotic and random data

384 produce broad spectra. The autocorrelation function can

385be used to qualitatively determine the presence of perio-

386dicity (cyclic fluctuations), randomness, or deterministic

387chaotic behavior in the time series data [Nisbet and Gurney,

3881982] and to determine the delay time [Sprott and

389Rowlands, 1995]. Figure 4a gives an example of the

390autocorrelation function for the solution (Figure 3a) of the

391exponential equation exhibiting a phase-forgetting fluctua-

392tion. Figure 4b shows that the autocorrelation function

393for the Lorenz model (plotted in Figure 3c) decreases

394gradually, which is typical for noncyclic fluctuations [Nisbet

395and Gurney, 1982]. Figure 4c demonstrates that the auto-

396correlation function for a random time series (plotted in

397Figure 3e) abruptly drops to zero.

398[24] The Hurst exponent, H, is a characteristic of the

399‘‘fractality,’’ or persistence, in time series. The notion of the

400Hurst exponent arises within the context of nonstationary

401stochastic process with stationary increments [Molz and Liu,

4021997], also called stochastic fractals. H is related to the type

403of autocorrelation in the time series or spatial series of the

404stationary process, with 0 � H � 1. The value of H = 0.5

Figure 3. Examples of (left) time series functions and (right) corresponding three-dimensional (3-D)
attractors, representing the relationships between the value of the time-varying function at time t and its
value at time t + t. (a) Time series and (b) attractor of the solution of the exponential function (see
equation (16), with A = 20 and a = 11), where t = 1. (c) Time series and (d) attractor of the solution of
deterministic chaotic Lorenz equations with the attractor showing a specific well-defined pattern with two
twisted loops, where t = 10. (e) Time series and (f) attractor of a random function, covering the whole
three-dimensional phase space, where t = 1.
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405 characterizes an uncorrelated process (Brownian motion or

406 Gaussian noise), with successive steps being independent.

407 H < 0.5 yields a negatively correlated stochastic process,

408 and H > 0.5 characterizes a positively correlated process.

409 As H increases toward 1, the stochastic process becomes

410 less irregular, with better defined trends, implying improved

411 near-term predictability of the system behavior.

412 [25] As a chaotic system may include both noisy and

413 deterministic chaotic components, it is important to dis-

414 criminate these components [Kapitaniak, 1988; Williams,

415 1997; Dubois, 1998]. For this purpose, in general, we can

416 employ either a high-pass filter (which removes low-fre-

417 quency fluctuation and allows high-frequency fluctuations

418 to pass) or a low-pass filter (which removes high-frequency

419 fluctuation and allows low-frequency fluctuations to pass).

420 In the examples presented in this paper, we employed the

421 Fourier transform method (using a code distributed by

422 TruSoft International, Inc. [1997]) based on the modifica-

423 tion of the transform coefficients with the following reverse

424transform, thus removing data points contributing uncorre-

425lated noise to the data set.

4262.2.3. Diagnostic Parameters of Chaos
427[26] Contrary to the Fourier analysis and the autocorre-

428lation function, which directly analyze the time series data

429of the observed scalar signal (e.g., measured pressure,

430temperature, and flow rate), the chaotic analysis of nonlin-

431ear systems is conducted in the n-dimensional phase space,

432for example, using time-lagged physical variables charac-

433terizing the system. In reconstructing the phase space of a

434system we determine the following main diagnostic param-

435eters of chaos [Tsonis, 1992; Abarbanel, 1996]: correlation

436(delay) time (t), global embedding dimension (DGED), local

437embedding dimension (DL), capacity (fractal) dimension

438(Dcap or D0), correlation dimension (Dcor or D2), Lyapunov

439exponents (lLyap), and Lyapunov dimension (DLyap or D1).

440In calculating these parameters we used a code CSPW

441(Contemporary Signal Processing for Windows, csp W,

442Software, Version 1.2) [Abarbanel, 1996], except Dcor,

443which was calculated using the code CDA Pro (Chaos Data

444Analyzer: The Professional Version) [Sprott and Rowlands,

4451995].

446[27] Correlation (delay) time is the time between the

447discrete time series points when a correlation between the

448point values essentially vanishes. The correlation time is

449determined using the average mutual information function

450based on Shannon and Weaver’s [1949] mutual information

451[Gallager, 1968; Abarbanel, 1996]. (Note that using the

452autocorrelation function may significantly overestimate t.)
453[28] Global embedding dimension, DGED, is the mini-

454mum (optimum) embedding dimension for phase space

455reconstruction. The global embedding dimension is deter-

456mined using a method called false nearest neighbors (FNN)

457[Kennel et al., 1992]. Using the FNN method, we determine

458the fraction of ‘‘false neighbors’’ (the points apparently

459positioned close to each other because of projection and

460which are separated in higher embedding dimensions) as a

461function of the embedding dimension that is needed to

462unfold an attractor. In other words, for the DGED-dimen-

463sional attractor the nearest neighbors along the attractor

464trajectories do not move apart significantly and cross each

465other compared to the next higher embedding dimension.

466[29] Local embedding dimension, DL, characterizes how

467the dynamic system evolves on a local scale [Abarbanel,

4681996]. DL indicates the number of degrees of freedom

469governing the system dynamics, i.e., how many dimensions

470should be used to predict the system dynamics [Abarbanel

471and Tsimring, 1998], and DL � DGED.

472[30] Correlation dimension, Dcor (sometimes named D2),

473is a scaling exponent characterizing a cloud of points in an

474n-dimensional phase space given by [Grassberger and

475Procaccia, 1983a, 1983b]

C rð Þ � rDcor ð6aÞ

477or

C rð Þ ¼ 1=N2 SHf r � xi � xj
�� ��� �

; ð6bÞ

Figure 4. Autocorrelation functions for the (a) time series
shown in Figure 3a, illustrating an example of phase-
forgetting oscillations; (b) time series of the Lorenz model
shown in Figure 3c, illustrating a gradual decrease typical
for noncyclic fluctuations; and (c) random time series
shown in Figure 3e, illustrating the abrupt drop to zero.
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479 where C(r) is the number of pairs separated by distances

480 less than r, N is the number of points, and Hf is the

481 Heaviside function, which takes the value of 1 if (r � jxi �
482 xjj) > 0 and 0 otherwise.

483 [31] Lyapunov exponents are the most valuable diagnos-

484 tic parameters needed to identify a chaotic system. The

485 Lyapunov exponents are a measure of the divergence with

486 time of initially adjacent trajectories in the phase space. The

487 number of Lyapunov exponents equals the local embedding

488 dimension DL.

489 2.2.4. Number of Points for Chaotic Analysis
490 [32] There is no general rule to determine the needed

491 number of data points for a chaos analysis [Williams, 1997].

492 The minimum number of points to produce an error of no

493 more than 0.05n (for 95% confidence) for n < 20 (where n is

494 the embedding dimension) in calculating Dcor can be

495 determined from [Tsonis, 1992]

Nmin � 102þ0:4n: ð7Þ

497 From equation (7), for example, for n = 4 the minimum

498 number of points is �4000, and for n = 5 it is 10,000 points.

499 Using fewer points, the attractor dimension can be under-

500 estimated [Lorenz, 1991; Tsonis, 1992]. In the presence of

501 noise the attractor dimensions can be overestimated, as the

502 noise itself behaves as an infinite-dimensional system that

503 diffuses the fractal structure of the attractor [Kapitaniak,

504 1988].

505 2.3. Models of Nonlinear Dynamics and Chaos

506 2.3.1. Types of Phenomenological Models
507 2.3.1.1. Hierarchical Scales
508 [33] A common equation used to describe flow in a fully

509 saturated fracture is a cubic law [Witherspoon et al., 1980].

510 However, a combination of many nonlinear factors and

511 processes on a local scale in a fracture leads to the departure

512 from the cubic law even in a single fracture [Pyrak-Nolte et

513 al., 1995]. One of the alternative approaches for the

514 problem of modeling is based on the concept of a hierarchy

515 of scales. A conventional hierarchical approach [e.g.,

516 Wheatcraft and Cushman, 1991; Neuman and Di Federico,

517 1998; Doughty and Karasaki, 2002] presents an infinite

518 hierarchy of scales for a permeability field, implying that

519 the same partial differential equation describes flow pro-

520 cesses on different scales, with differences arising from the

521 effect of using different properties at different scales.

522 Contrary to this approach, a hierarchical approach by

523 Faybishenko et al. [2001b, 2003a] assumes different phe-

524 nomenological models for different hierarchical scales.

525 These hierarchical scales are as follows: (1) elemental scale,

526 laboratory cores, fracture replicas, or a single fracture at a

527 field site; (2) small scale (approximately 0.1–1 m2), repre-

528 senting flow and mass transport in a single fracture,

529 including the fracture-matrix interaction, film flow, and

530 dripping water phenomena; (3) intermediate scale (approx-

531 imately 10–100 m2), representing flow in the fracture

532 network on a field scale; and (4) large (regional) scale,

533 representing the fracture and fault network geometry.

534[34] The need for different models for different levels of

535the hierarchy arises from the fact that we normally use

536various instrumentation and methods depending on the scale

537of observations or measurements. For example, on the

538elemental scale, using fracture replicas, we can observe

539intrafracture water meandering and dripping [Su et al.,

5401999; Geller et al., 2001], depending on the fracture

541roughness, which are not observable at larger scales. On

542the small field scale, using small infiltration tests, we can

543measure the infiltration flux into a single fracture and the

544surrounding matrix, as well as water dripping frequency

545from the fracture [Podgorney et al., 2000], which are not

546usually observable either at larger or smaller scales. On

547the intermediate scale we can conduct an infiltration test

548characterizing flow and transport in a fracture network

549[Faybishenko et al., 2000], which physically may differ

550from the results of measurements in a single fracture or a

551fracture core and replica. On the large field scale we study

552the effects of geologic features, for example, faults or rubble

553zones, which are neither geometrically nor physically anal-

554ogous to smaller-scale investigations. Because the model

555type depends on the scale, to obtain spatially aggregated

556predictions at a larger scale, the smaller-scale model should

557be run at multiple locations, allowing the aggregation of

558model outputs.

5592.3.1.2. Elemental-Scale or Small-Scale Models
560[35] Using measurements of different state variables

561(such as pressure, temperature, or concentration) at the

562same location, a general form equation for the system’s

563state vector for a given time is given by

q ¼ f q1; . . . ; qkð Þ; ð8Þ

565where qi(i = 1, . . ., k) represents different state variables.

566Using the time series of a variable, a discrete scalar time

567series deterministic model can be presented as

xnþ1 ¼ N xnð Þ; ð9Þ

569where subscript n denotes discrete time steps and N is a

570nonlinear function, which can also be a vector [Lai and

571Chen, 1996; Haken, 1997]. In the presence of a random

572variable (hn), with the expected value E(hn) = 0, the model

573becomes

xnþ1 ¼ N xnð Þ þ hn: ð10Þ

575The application of this model using the results of the water-

576air injection test is given in section 4.1.

5772.3.1.3. Intermediate- or Large-Scale Models
578[36] The space- and time-dependent state vector of the

579system variable (quantity), q, can be presented as

q ¼ f x; tð Þ; ð11Þ

581where f (x, t) could refer to either a scalar variable (e.g.,

582pressure, temperature, and concentration) or flow through

583the material. The general form of the evolution (balance)
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584 equation for a certain area, depth, and time intervals can be

585 given by

qc ¼ qp � ql: ð12Þ

587 where qc is the rate of change of q, qp is the production rate

588 of q, and ql is the loss rate of q. Taking into account both

589 nonlinear deterministic and stochastic components of q,

590 equation (12) can be presented as [Haken, 1983, 1997]

q0 x; tð Þ ¼ N q x; tð Þ; x;r;a; tÞ½ � þ F x; tð Þ; ð13Þ

592 where N is a nonlinear function, q0 is the temporal deriv-

593 ative of q, x is the space variable, F(x,t) is a fluctuating

594 external force, and a is a control parameter.

595 2.3.1.4. Time Delay Equation
596 [37] If the delay time (t) is known, which is typical for

597 systems with a feedback, a simplified form of equation (13)

598 can be given by a delay equation

q0 tð Þ ¼ N q t � tð Þ½ �: ð14Þ

600 Delay equations can be used in either time series or

601 evolution models (see section 2.3.2). Note that the initial

602 condition used in solving the delay equation should be fixed

603 for the time interval t [Haken, 1997]. The solution of the

604 delay model from a single data series can be provided using

605 a phase reconstruction method (see section 2.2).

606 2.3.2. Difference Equation for a Time Series Model
607 [38] Discrete time series chaotic models (derived as an

608 approximation of simple continuous analytical functions)

609 are extensively used in population dynamics [May, 1981].

610 For example, from the exponential function

y ¼ Ax exp �axð Þ; ð15Þ

612 where A and a are coefficients, one can obtain the

613 difference equation

xnþ1 ¼ Axn exp �axnð Þ: ð16Þ

615 The investigation of equation (16) shows that as A

616 increases, the function xn+1 = f(xn) goes from a stable

617 state to cycling, period doubling, and then to chaos.

618 Equations (15) and (16) were used to describe the time

619 series data in population dynamics [May, 1981; Sparrow,

620 1982]. An application of equation (16) with a random

621 component for flow in a fracture will be given in section 4.1.

622 2.3.3. Difference-Differential Equation for Soil
623 Moisture Balance
624 [39] On the basis of the general form of the balance

625 equation, equation (12), the equation for long-term soil

626 moisture variations within a certain area and representing

627 a hydrologically active depth interval, can be written as

628 [Rodriguez-Iturbe et al., 1991a, equation (1)]

nZr ds=dt ¼ P sð Þf sð Þ � E sð Þ; ð17Þ

630 where n is the soil porosity, Zr is the hydrologically active

631 depth interval, s is the moisture saturation, t is time, P(s) is

632the precipitation rate, f(s) is the infiltration function

633(characterizing the fraction of precipitation causing infiltra-

634tion), and E(s) is the evapotranspiration rate. Equation (17)

635expresses the feedback between atmospheric and subsurface

636flow processes. Rodriguez-Iturbe et al. [1991a, 1991b]

637assumed the following relationships between infiltration,

638precipitation, and evapotranspiration rates as functions of

639soil saturation:

E sð Þ ¼ Eps
c; ð18Þ

f sð Þ ¼ 1� esr; ð19Þ

P sð Þ ¼ Pa 1þ sc=Acð Þ; ð20Þ

645where Ep is the potential evapotranspiration and c, e, and r

646are nonnegative constants, Pa is an advective component of

647precipitation resulting from the external (advective) water

648vapor formed by evaporation outside the given area, for

649which equation (17) is written, and Ac is a parameter

650describing the combined effect of the advective moisture

651influx to the study area, wind speed, and potential

652evaporation. To take into account the dynamic effect of

653the moisture content on infiltration, Rodriguez-Iturbe et al.

654[1991b] introduced a delay mechanism into the equation for

655soil moisture dynamics representing timescales from a week

656to 2–3 months. As a result, they developed a difference-

657differential equation:

ds tð Þ=dt ¼ as t � tð Þ= bþ sm t � tð Þ½ � a 1þ sc t � tð Þ=A½ �f gf s tð Þ½ �
� bsc tð Þ; ð21Þ

659where s(t) is the soil saturation at time t, t is the time delay

660interval, s(t � t) is the saturation at time (t � t), m, a, and b
661are positive coefficients, and a = Pa/(nZr) and b = Ep/(nZr)

662are independent climatic forcing coefficients [Rodriguez-

663Iturbe et al., 1991a]. Thus, instead of a one-dimensional

664differential equation, equation (17), a delayed difference-

665differential equation, equation (21), representing an infinite-

666dimensional system, was obtained. Depending on the values

667of parameters, equation (21) may either converge to a fixed

668equilibrium point, developing a limit cycle, or converge to

669any nonperiodic pattern, creating chaotic behavior. Exam-

670ples of the time series and corresponding attractors

671generated using the solution of equation (21) are shown in

672Figure 5.

6732.3.4. Partial Differential Equation for Film Flow
674[40] Film flow in fractures is controlled by a combination

675of surface tension, gravity, and inertia. In unsaturated

676fractures, liquid film is bounded on one side of the fracture

677by the supporting solid matrix and on the other side by a

678fluid interface. If the surrounding fluid is gas, the film has a

679free surface. Film flow processes also depend on numerous

680factors, such as traces of impurities, roughness, temperature,

681the contact angle of a drop [Deriagin et al., 1985],

682and intrafracture water dripping [Geller et al., 2001].

683Recent theoretical and computational research [Swinney

XXXXXX Faybishenko: NONLINEAR DYNAMICS IN UNSATURATED FLOW

8 of 30

XXXXXX



684 and Gollub, 1985; Indereshkumar and Frenkel, 1999] on

685 films flowing down inclined planes indicated highly ordered

686 patterns that can spontaneously appear in some driven

687 dissipative systems. For high Reynolds numbers [Yu et al.,

688 1995] the instability is created by gravity forces [Frenkel et

689al., 1987; Nicholl et al., 1994; Frenkel and Indireshkumar,

6901996]. For small Reynolds numbers the instability is created

691by molecular forces [Faybishenko et al., 2001b]. For both

692large and small Reynolds numbers, film flow on an inclined

693surface can be described using a fourth-order partial differ-

Figure 5. Examples of the solution of equation (21) with different time delays: (a) 5 days, (b) 10 days,
(c) 12 days, and (d) 20 days. (left) The time series of the moisture content (dashed lines) and precipitation
(solid lines) and (right) corresponding attractors are shown. Adapted from Rodriguez-Iturbe et al.
[1991b].
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694 ential equation, called the Kuramoto-Sivashinsky (K-S)

695 equation, given in a canonical form by [Frenkel and

696 Indireshkumar, 1996; Faybishenko et al., 2001b]

@f
@t

þ f
@f
@c

þ @2f
@c2

þ @4f
@c4

¼ 0; ð22Þ

698 where f, c, and t are dimensionless film thickness, length,

699 and time, respectively. The gravitational, capillary, and

700 molecular forces included in the derivation of the K-S

701 equation are identical to those occurring in fractures.

702 Sivashinsky and Michelson [1980] were the first to indicate

703 that the deterministic equation, equation (22), leads to

704 chaotic behavior. In the K-S equation the second term is a

705 nonlinear term; the third and fourth are the destabilizing and

706 stabilizing terms, respectively, on the same order of

707 magnitude, that describe dissipative processes [Babchin et

708 al., 1983; Frenkel et al., 1987]. Because the attractors of the

709 solution of equation (22) are geometrically analogous

710 to those plotted from the results of laboratory and

711 field experiments (see section 4), we hypothesize that

712 equation (22) could be used to describe intrafracture flow.

713 For the flow process described by the K-S equation, we can

714 reasonably hypothesize that the linear relationship between

715 the pressure head and the flow rate (i.e., Darcy’s law) on a

716 local scale is invalid at least for the periods of chaotic

717 fluctuation.

719 3. KEY FEATURES OF GEOMETRY AND NONLINEAR
720 DYNAMICS OF FLOW THROUGH UNSATURATED
721 FRACTURED POROUS MEDIA

722 [41] Processes generating nonlinear dynamics in flow

723 through unsaturated fractured porous media can be divided

724 into two categories: (1) the complex geometry of flow paths

725 and (2) nonlinear liquid flow and chemical transport

726 through fractures and surrounding matrix. A key question

727 is, What is the role of internal factors associated with the

728 geometry and physics of unsaturated intrafracture flow (i.e.,

729 film flow and water dripping) in causing the chaotic

730 dynamics?

731 3.1. Complex Geometry of Flow Paths and
732 Conceptual Models of Fracture Networks

733 3.1.1. Rock Discontinuities
734 [42] Rock discontinuities are present on all scales,

735 extending from the microscale of microfissures, among

736 the mineral components of the rock, to the macroscale of

737 various types of joints and faults [da Cunha, 1993; Priest,

738 1993]. The geometrical structure and physics of flow

739 through fractured rock can be viewed differently depending

740 on the scale of the investigation, which is one of the main

741 reasons for using the concept of scale hierarchy for fractured

742 rock [Faybishenko et al., 2003a].

743 [43] To provide an example of complexity of geometrical

744 features of fractured rock on a field scale (mesoscale),

745 Figure 6a illustrates a photograph of a fractured-basalt

746 outcrop at the Box Canyon site in Idaho near the Idaho

747National Engineering and Environmental Laboratory

748(INEEL). Figure 6 shows a variety of irregular (on average,

749hexagonal [Korvin, 1992]) basalt columns separated by

750vertical joints and horizontal fractures. The complexity of

751the fracture network geometry (featuring a decreasing

752number of conducting fractures with depth) can cause either

753divergence or convergence of localized and nonuniform

754flow paths in different parts of the basalt flow and the

755intersection of flow paths with mixing of the flowing

756solution (Figure 6b).

757[44] The intrafracture flow processes are affected by a

758variety of local flow patterns for different fracture junctions.

759For example, Stothoff and Or [2000] presented examples of

760lateral diversion on hanging walls (which is flux-depen-

761dent), routing into fractures (which is fracture-capacity-

762dependent), anisotropy from diversion, and funneling or

763split flow that may occur as a result of fracture offsets.

764Moreover, the intrafracture flow processes are affected by

765the fracture aperture, fracture surface roughness, asperity

766contacts, and the fracture-matrix interaction [Pruess, 1999;

767Gentier et al., 2000; Ho, 2001]. Furthermore, it is apparent

768that intrafracture roughness affecting flow on a local scale is

769neither geometrically nor physically analogous to the field-

770scale fracture pattern.

7713.1.2. Intrafracture Flow Fingering and Tortuosity
772Effects
773[45] Laboratory experiments with fracture models [Glass

774et al., 1989, 1991; Su et al., 1999; Geller et al., 2001]

775demonstrated the pervasiveness of highly localized and

776extremely nonuniform flow paths in the fracture plane. In

777their laboratory tests, using dyed water supplied through a

778ceramic plate at the top of a transparent fracture replica

779(about 15 cm wide and 30 cm long) with a variable aperture,

780Su et al. [1999] showed that the local geometry of flow

781could change rapidly over time. Geller et al. [2001] ob-

782served similar behavior in dripping-water experiments con-

783ducted using a transparent replica of a natural rock fracture

784with a variable aperture. Fingers are also formed in water-

785repellent sandy soils [Ritsema et al., 1998]. Once devel-

786oped, fingers usually progress along the same pathways,

787and the average coverage of these pathways remains virtu-

788ally stable over time, confirming the concept of a ‘‘self-

789organized’’ critical state [Janosi and Horvath, 1989].

790[46] This concept implies that the nonuniform surface

791coverage has a critical value even after additional water is

792supplied to the surface. The system organizes itself in such a

793way that the additional water is removed through streams,

794which is confirmed experimentally and by using computer

795simulations of raindrops on a window pane [Janosi and

796Horvath, 1989]. Su et al. [1999] and Geller et al. [2001]

797observed practically the same average coverage of seeps

798over time, while the local geometry of flow changed rapidly.

799The results of laboratory studies by Geller et al. [2001] are

800analyzed in section 4.

801[47] Intrafracture flow patterns are strongly dependent on

802tortuosity effects that take place in the fracture space [e.g.,

803Tsang, 1984]. Tortuosity effects in intrafracture flow pro-

804cesses are significantly dependent on the asperity pattern,
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805 which may lead to complex dendritic patterns for the

806 saturation distribution within a fracture during wetting-

807 drying cycles [Liou, 1999; Pruess, 1999, 2000; Ho, 2001].

808 3.1.3. Temporal Changes in Flow Geometry
809 [48] Field and laboratory studies revealed that fractures

810 might become nonconductive because apertures could grad-

811 ually be closed, either partially or completely. For example,

812 in a series of laboratory experiments, Gentier et al. [2000]

813 found that as the normal stress increases, the initial value of

814 intrinsic transmissivity is reduced by 1.5–10 times, with

815 the smallest reductions for fractures with hard infill. In

816 field infiltration tests, Dahan et al. [2001] found that

817 fracture coating, salt dissolution, particle shearing from

818 the relatively soft fracture surfaces, disintegration of fracture

819 filling materials, solid particle migration, and clay swelling

820 are the main processes causing instability and temporal

821 variation of the flow rate. These intrafracture changes are

822 likely to affect the directions of flow paths as well.

823 3.1.4. Fracture Network Conceptual Models
824 [49] Fracture network conceptual models are based on

825 evaluation of fracture length, density, and connectivity.

826 Several studies indicate a power law distribution of either

827 faults [Bour and Davy, 1997] or fracture lengths [Walmann

828 et al., 1996; Renshaw, 2000]. However, the power law

829 distribution may fail for small scales (less than 10�5–

830 10�3 m) or large scales (exceeding 101–102 m), and the

831 power law exponent may not be constant [Renshaw, 2000].

832 Because water flow in a fracture network embedded in a

833 low-permeability matrix depends strongly on the intercon-

834 nections of fractures, fracture-network connectivity is one of

835 the main factors affecting mass transport through rock [La

836 Pointe, 2000]. Whereas exact measurements of fracture

837 lengths or connectedness are impossible, field measure-

838 ments of permeability can be used to determine effective

839two- or three-dimensional fracture network connectedness

840[Renshaw, 2000]. A shortcoming of network models is that

841the fracture geometric parameters strongly impacting flow

842and transport, such as fracture apertures and connectivity,

843typically cannot be well constrained from field observations

844[Pruess et al., 1999].

845[50] Fractal analysis has been used to predict the fractal

846structure and flow parameters in soils and rocks, including

847the geometry and pore size distribution in the porous space

848of soil and fractured media, predicting permeability and soil

849water retention and transport processes such as diffusion,

850dispersion, adsorption on irregular surfaces, and propaga-

851tion of cracks and fragmentation [Barton and Larsen, 1985;

852Carr, 1989; Pyrak-Nolte et al., 1992; Tyler and Wheatcraft,

8531990; Meakin, 1991; Sahimi, 1993; Crawford et al.,

8541999; Long et al., 1993; Feder and Jøssang, 1995; Molz

855and Boman, 1995; Perrier et al., 1996; Perfect, 1997;

856Pachepsky and Timlin, 1998]. Fractal and scaling models

857may also be used to describe the moisture content distribu-

858tion in heterogeneous media [Lenormand and Zarcone,

8591989; Pruess, 1999, 2000; Yortsos, 2000]. In his review

860of fractal models, Perfect [1997] considered the fragmenta-

861tion of aggregates composed of heterogeneous brittle earth

862materials of finite size. He assumed that a structural failure

863is hierarchical in nature and involves multiple fracturing

864of the aggregate blocks. Despite the fact that many authors

865have conducted experimental investigations of fractal prop-

866erties of porous media [e.g., Rieu and Sposito, 1991;

867Giménez et al., 1997], Perfect [1997, p. 196] suggested that

868‘‘while fractal models for the fragmentation of rocks and

869soils are relatively well developed, their experimental ver-

870ification is weak or entirely lacking.’’ Also, it is still unclear

871how well fractal models predict permeability and transport

872in the subsurface [Giménez et al., 1997; Doughty and

Figure 6. (a) A photograph of a fractured basalt outcrop at the Box Canyon site in Idaho near the Idaho
National Engineering and Environmental Laboratory, showing a variety of irregular basalt columns
separated by vertical joints and horizontal fractures. (b) Schematic of mechanisms of water flow in
fractured basalt: (1) fracture-to-matrix diffusion, (2) vesicular basalt–to–massive basalt diffusion,
(3) preferential flow through conductive fractures and the effect of funneling, (4) vesicular basalt–to–
nonconductive fracture diffusion, (5) conductive fracture–to–vesicular basalt flow and diffusion,
(6) lateral flow and advective transport in the central fracture zone, (7) lateral flow and advective
transport in the rubble zone, and (8) flow into the underlying basalt flow [Faybishenko et al., 2000].
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873 Karasaki, 2002]. It is important that the presence of a fractal

874 structure of a fracture network is indicative of an expected

875 chaotic behavior for flow in the subsurface [Dubois, 1998;

876 Turcotte, 1997].

877 [51] Models for fracture pattern have limitations in in-

878 vestigating unsaturated flow, because observable fractures

879 often play no significant role in water flow, even when they

880 appear to be geometrically interconnected [Faybishenko et

881 al., 2000; Glass et al., 2002]. To account for fractures

882 affecting flow, Liu et al. [1998] proposed an active fracture

883 model for unsaturated flow and transport in fractured rock,

884 assuming gravity-dominated, nonequilibrium, preferential

885 liquid flow in fractures, and a reduced area of fracture-

886 matrix interaction. They inferred that active fractures con-

887 stitute about 18–27% of the connected fractures in highly

888 fractured tuff under ambient conditions. Moreover, flow

889 paths in partially saturated rocks are not exactly repeatable,

890 because they depend on small variations in boundary and

891 initial conditions [Faybishenko et al., 2000; Faybishenko,

892 2002].

893 3.2. Processes Causing Nonlinear Dynamics and
894 Flow Instabilities

895 [52] Nonlinear dynamics in flow through fractured rock

896 results from a nonlinear superposition, competition, and

897 feedback between various factors and processes (most of

898 which are nonlinear), such as fast, preferential flow, epi-

899 sodic flow events, film flow along fracture surfaces, intra-

900 fracture dripping water phenomena, fracture-matrix

901 interaction, root uptake, colloidal transport, microbiological

902 activities, temperature effects and vapor transport, entrapped

903 air, chemical transport, chaotic mixing, and sensitivity to

904 initial conditions and flow parameters.

905 3.2.1. Fast, Preferential Flow and Episodic
906 Flow Events
907 [53] Fast, preferential flow is one of the most important

908 features of flow in fractured rock. Several attempts have

909 been made to explain the phenomena of fast water seepage

910 in fractured rock using concepts of film flow [Tokunaga and

911 Wan, 1997], water channeling [Johns and Roberts, 1991;

912 Pruess, 1999; Pruess et al., 1999; Su et al., 1999], and

913 fingering [Selker et al., 1992]. Water channeling in fractures

914 limits diffusive coupling between the fracture and matrix to

915 a small area of the fracture plane [Dykhuizen, 1992; Su et

916 al., 1999].

917 [54] Episodic flow events are observed at all scales but

918 particularly at a laboratory scale and are caused by a

919 combination of physical processes resulting, for example,

920 from pore throat and preferential flow effects, surface

921 wettability, fracture roughness, and asperity contacts. Nu-

922 merous examples of flow instability and episodic flow in

923 both soils and fractured rock are described in the literature.

924 For example, the flow rate [Prazak et al., 1992; Podgorney

925 et al., 2000; Salve et al., 2002] and capillary pressure

926 [Selker et al., 1992] exhibit significant high-frequency

927 temporal fluctuations under constant boundary conditions

928 during infiltration into the subsurface. Air compression

929 ahead of the wetting front creates a pulsation of water

930pressure at the wetting front [Wang et al., 1998]. Heteroge-

931neous fracture asperities are possible causes for episodic

932flow events, even under steady-infiltration boundary con-

933ditions [Ho, 2001]. That asperities create ‘‘pinch point’’

934apertures is shown to (in turn) create an intrafracture

935capillary barrier effect, thus generating episodic accumula-

936tion and relatively short drainage events, which are, how-

937ever, large in magnitude relative to infiltration events within

938the fracture [Ho, 2001].

9393.2.2. Film Flow
940[55] For partially saturated flow in a fracture the liquid

941water layer is bounded on one side by the supporting solid

942matrix and on the other side by air (a free surface). Liquid

943film flow in fractures is affected by a combination of surface

944tension, gravity, and inertia. It also depends on numerous

945other factors, such as traces of impurities, roughness,

946temperature, and the contact angle of drop [Deriagin et

947al., 1989], intrafracture water dripping [Geller et al., 2001],

948grain-grain contacts, salinity, and mineralogy [Renard and

949Ortoleva, 1997]. Tokunaga and Wan [1997] determined that

950the average surface film thickness in fractured tuff ranged

951from 2 to 70 mm, whereas an average film velocity ranged

952from 2 to 40 m/d, �103 times faster than that of the pore

953water under unit gradient saturated flow.

9543.2.3. Dripping Water
955[56] It is known that dripping from a single faucet [Shaw,

9561984] or capillary under controlled boundary conditions is a

957deterministic chaotic process. Dripping water frequency

958can be described by a simple logistic difference equation

959with a small noise component [Shaw, 1984] or a one-

960dimensional approximation of the Navier-Stokes equations

961[Ambravaneswaran et al., 2000]. We can easily imagine

962dripping from a fracture as a multifaucet dripping process,

963which is expected to generate a more complex chaotic

964process at the fracture exit, compared to a single faucet.

965However, it is not known whether intrafracture flow pro-

966cesses are chaotic. Intrafracture water dripping is affected

967by the viscosity, surface tension, and phase changes along

968an irregular surface, along with sticking, spreading, tortu-

969osity, accumulation and episodic flow of water droplets,

970impurities, roughness, temperature, and the surface slope.

971All these processes cause a transition to high-dimensional

972chaos (Dcor > 5 [Sprott and Rowlands, 1995]), which is

973difficult to distinguish from randomness. Some examples

974from laboratory and field dripping-water experiments are

975given in section 4.

9763.2.4. Fracture-Matrix Interaction
977[57] Fracture-matrix interaction involves the water ex-

978change between fractures and the surrounding matrix. Fast

979flow in high-permeability fractures can be retarded by

980matrix imbibition, causing the variability of flow geometry

981and moisture content between the matrix on either side of

982the fracture [Faybishenko and Finsterle, 2000]. Because of

983flow channeling through variably saturated fractures an

984effective fracture surface area, affecting the fracture-matrix

985water interaction, is usually less than the total fracture

986surface [Geller et al., 2001; Glass et al., 1989, 1991; Glass

987and Nicholl, 1996]. Using the results of several case studies
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988 (testing metal plates with irregular geometry surfaces) and

989 laboratory water-dripping experiments (conducted by Geller

990 et al. [2001]), Fuentes and Faybishenko [2004] have

991 recently shown that the fracture flow area can be predicted

992 from the fracture surface geometry. Fracture-matrix interac-

993 tion is further complicated by the nonequilibrium nature of

994 the imbibition process, exemplified by spontaneous coun-

995 tercurrent capillary imbibition [Barenblatt et al., 2002].

996 However, direct field measurements of the fracture-matrix

997 interaction area are impossible to obtain. This area can be

998 estimated using numerical simulations of the results of

999 infiltration tests. For example, according to the three-di-

1000 mensional modeling of the Box Canyon pneumatic and

1001 infiltration tests, using a dual-permeability model, the

1002 fracture-matrix interfacial area should be scaled by a factor

1003 of 0.01 for the results of modeling to match experiments

1004 [Unger et al., 2004].

1005 3.2.5. Root Uptake
1006 [58] Lai and Katul [2000] showed that a root water

1007 uptake affects the dynamics of soil evapotranspiration,

1008 and it depends on preferential water flow through the topsoil

1009 layers and extraction from deeper layers despite limited

1010 rooting density with depth. To model the water balance in

1011 the near-surface zone, we need to account for the dynamic

1012 switching of root uptake as a function of soil moisture

1013 content and its spatial distribution in the soil profile, which,

1014 in turn, may result in chaotic behavior for flow in the root

1015 zone.

1016 3.2.6. Microbiological Activity
1017 [59] Feedback between microbiological activity and wa-

1018 ter flow is an important process, one that affects other

1019 vadose zone processes. First, microbiological activity is

1020 accelerated as water saturation increases [Gerba and Goyal,

1021 1985]. As microorganisms consume relatively insoluble O2

1022 from soil air [Garner et al., 1969], they produce highly

1023 soluble CO2 [Flühler et al., 1986]. The dissolution of CO2

1024 decreases the volume of entrapped gas, causing hydraulic

1025 conductivity to increase up its the maximum value. In

1026 contrast, as microbial cells grow, ‘‘biofilms’’ progressively

1027 accumulate, decreasing pore diameters and/or pore throats

1028 [Cunningham, 1993] and making the particle surfaces

1029 irregular (thus increasing the friction factor [Rittman,

1030 1993]). As a result, hydraulic conductivity decreases by as

1031 much as 3 orders of magnitude [Cunningham, 1993; Jaffe

1032 and Taylor, 1993; Rittman, 1993]. The effect of bacterial

1033 clogging is much more pronounced in fine-textured materi-

1034 als [Vandevivere et al., 1995]. The sorption and desorption

1035 of microbial cells appears to equilibrate with time, resulting

1036 in an essentially constant permeability. Entry of free air,

1037 containing oxygen, into the soil lessens the effect of bio-

1038 films [Freeze and Cherry, 1979].

1039 3.2.7. Colloids
1040 [60] The colloidal dynamics in fractured porous media

1041 are complicated by the electrokinetic and hydrodynamic

1042 interaction between colloids, nonequilibrium adsorption,

1043 nonsorptive interactions of bacteria and colloids with par-

1044 ticles, growth and grazing by protozoa, and detachment

1045 from solid surfaces, which are different from the dynamics

1046in an open space [Harvey and Garabedian, 1991]. These

1047processes can be described by a set of nonlinear, coupled

1048electrokinetic and convective diffusion equations for ion

1049densities in combination with Navier-Stokes equations for

1050the mass current [Horbach and Frenkel, 2001], indicating

1051that colloidal dynamics are nonlinear [Pagonabarraga et

1052al., 1999].

10533.2.8. Temperature and Vapor Transport
1054[61] Seasonal and diurnal variations in ambient tempera-

1055ture result in subsurface temperature gradients, inducing

1056thermal vapor diffusion [Milly, 1996]. Subsurface vapor

1057diffusion affects evapotranspiration, which is controlled

1058simultaneously by root conditions, soil properties, liquid

1059transport, and climatic conditions [Lakshmi and Wood,

10601998]. The simultaneous vapor and liquid transport in soils

1061presents a kind of feedback mechanism between various

1062controlling parameters, which also affects the interaction of

1063soil moisture and atmospheric processes (Figure 7). Cahill

1064and Parlange [1998] showed that in the near-surface zone

1065the contribution of heat flux to vapor transport is significant,

1066accounting for 40–60% of the total moisture flux. To

1067simulate vapor-liquid flow in soil, Cahill and Parlange

1068[1998] used Fourier’s law for heat flux density and

1069expressed heat transport as a function of mass transfer,

1070accounting for water evaporation in one place and its

1071recondensation in another. They observed a temporal vari-

1072ation of the moisture content with both low- and high-

1073frequency components (Figure 8) and noted that the

1074removal of high-frequency fluctuations could cause some

1075errors in simulations of the water regime. Thermal injection

1076tests in fractured rock are expected to generate more

1077pronounced high-frequency fluctuations of temperature at

1078fractures, whereas the temperature within the rock matrix

1079could change gradually [Pruess et al., 1999].

10803.2.9. Chemical Transport
1081[62] Turing [1952] was the first to show that spontaneous

1082patterns observed in biological systems are analogous to

1083those spontaneously occurring in chemical reaction-diffu-

1084sion systems. The positive feedback between fluid transport

1085and mineral dissolution creates complex reaction front

1086morphologies such as fingers [Renard et al., 1998]. The

1087deterministic chaotic diffusion-reaction process (for assess-

1088ing the reaction rate in chemical systems) replaces the old

1089stochastic transport models [Schuster, 1988; Gaspard and

1090Klages, 1998]. According to the deterministic chaotic con-

1091cept, macroscopic transport coefficients, such as diffusion

1092coefficient and reaction rate, will exhibit irregular behavior

1093as a function of a control system parameter [Gaspard

1094and Klages, 1998]. The nonequilibrium and nonlinear

1095processes, typical for self-organizing and nonlinear phe-

1096nomena, are known to exist at the reaction front [Ortoleva,

10971994, chapter 6]. These processes result in oscillations,

1098chaos, and waves that have been found to appear at different

1099scales: centimeter-scale redox front scalloping in siltstones,

1100meter- to kilometer-scale scalloping of uranium deposits,

1101submeter-scale weathering fronts in manganese-rich sedi-

1102mentary rock, dissolution holes in karstified limestones,

1103etc. [Ortoleva, 1994, chapter 6]. Figure 9a illustrates the
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1104 two-mineral reaction front between the altered and unaltered

1105 zones, with the accumulation of mineral B (shaded zones) at

1106 tips of dissolution fingers for mineral A, resulting in the

1107 oscillatory switching between two configurations. Figure 9b

1108 illustrates the possibility of branching of propagating fingers

1109 at the reaction front.

1110 3.2.10. Entrapped Air
1111 [63] In groundwater or perched-water zones, entrapped

1112 air can be present within the zone of seasonal water table

1113 fluctuations. Field and laboratory experimental investiga-

1114 tions showed that in the presence of entrapped air, quasi-

1115 saturated hydraulic conductivity exhibits a three-stage

1116 temporal behavior [Luthin, 1957; Faybishenko, 1995,

1117 1999], as caused by a nonlinear superposition and compe-

1118 tition (i.e., some processes cause the decrease and others

1119 cause the increase in hydraulic conductivity) of several

1120 processes. During the first stage the hydraulic conductivity

1121 decreases as entrapped air redistributes within a porous

1122 space and plugs the most conducting pores [Luthin,

1123 1957]. During the second stage, as the entrapped air is

1124 discharged, hydraulic conductivity increases up to a maxi-

1125 mum value at a nearly fully saturated state. Exponential and

1126 power law relationships were found to describe the hydrau-

1127 lic conductivity as a function of the volume of entrapped air

1128 [Faybishenko, 1995]. During the third stage, as biofilms are

1129 generated, the hydraulic conductivity eventually decreases

1130 to minimum values. When the water table drops, atmo-

1131 spheric air enters the soil, and biofilms are destroyed by

1132 oxygen that enters the pore space. During the next infiltra-

1133 tion events the initial hydraulic conductivity is high again,

1134 which was observed in both soils [Faybishenko, 1995] and

1135 fractured rocks [Salve and Oldenburg, 2001; Faybishenko

1136 et al., 2003b]. These temporal fluctuations of the quasi-

1137 hydraulic conductivity, K, can be described using a two-

1138 threshold logistic differential equation

dK=dt ¼ �r 1� K=K0ð Þ 1� K=Ksð ÞK ð23Þ

1139for K0 < Ks, where Ks is the saturated hydraulic conductivity

1141(maximum value of K at the end of the second stage), K0 is

1142the minimum value of K at the end of the first stage, and r is

1143a parameter that varies for the different stages of

1144percolation.

11453.2.11. Chaotic Mixing
1146[64] Chaotic mixing is the physical process of solute

1147spreading into a fluid, caused by the stretching and folding

1148of material lines and surfaces in heterogeneous media

1149[Weeks and Sposito, 1998]. In contrast to dilution, mixing

1150takes place within much shorter timescales, increasing the

1151plume boundary area and causing higher local concentration

1152gradients, thus promoting effective solute dilution. The

1153mixing efficiency generally depends on the spatial variabil-

1154ity of hydraulic conductivity (or transitions) between zones

1155of highly contrasting hydraulic conductivities. Weeks and

1156Sposito [1998] showed that mixing is driven by unsteady

Figure 7. Conceptual diagram of the pathways for the interaction between the soil moisture and
precipitation [after Entekhabi et al., 1996].

Figure 8. The time series of the volumetric moisture
content (VMC) from field observations containing both the
low-frequency diurnal fluctuations (solid line) and high-
frequency variations (symbols) [Cahill and Parlange,
1998].
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1157 advection, which acts to stretch and fold fluid filaments in

1158 such a manner that plume boundary areas become highly

1159 irregular. Weeks and Sposito [1998] showed that the mixing

1160 of a solute plume by unsteady groundwater flow, in an

1161 aquifer with pronounced hydraulic conductivity variation,

1162 would be most effective if chaotic path lines were induced.

1163 3.2.12. Sensitivity to Initial Conditions and Flow
1164 Parameters
1165 [65] Chaotic flow processes in the vadose zone may

1166 result from a sensitive dependence of flow parameters upon

1167 the coupled effects of several nonlinear intrinsic factors and

1168 processes, such as nonlinear relationships between the flow

1169 rate, water content, pressure, and temperature; air entrap-

1170 ment; heterogeneity and roughness of fractures; clogging of

1171 the conductive fractures by sediments and biofilms; kinetics

1172 of the matrix-fracture water exchange; and contact angle

1173 hysteresis. As a result, small changes in initial conditions

1174 (spatial distribution of water content, pressure, and temper-

1175 ature) and boundary conditions (precipitation, ambient tem-

1176perature and pressure, and groundwater fluctuations) may

1177significantly change flow characteristics through unsaturated

1178media. Examples of the sensitivity of flow pathways and the

1179infiltration rate in fractured basalt is given by Faybishenko

1180et al. [2000] and Podgorney et al. [2000]. Examples of the

1181dependence of hydraulic conductivity on initial moisture

1182content are given by Hallaire [1961], Feldman [1988],

1183Conca and Wright [1994], and Faybishenko [1999].

11854. EXAMPLES FROM LABORATORY AND FIELD
1186EXPERIMENTS

11874.1. Laboratory Experiments to Characterize
1188Intrafracture Flow

11894.1.1. Water-Gas Injection Experiments
11904.1.1.1. Design of Experiments
1191[66] Persoff and Pruess [1995] conducted a series of two-

1192phase flow experiments by simultaneously injecting water

1193and nitrogen gas, representing wetting and nonwetting

1194phases, respectively, into replicas of natural rough-walled

1195rock fractures of granite (from the Stripa mine in Sweden)

1196and tuff (from the Dixie Valley site, Nevada). In these

1197experiments for each of the constant gas and liquid flow

1198rates the gas and liquid pressure were measured at inlet and

1199outlet edges of the fracture. The analysis of the results of two

1200experiments, experiments A and C, is presented in this

1201section. Experiment Awas carried out using a Stripa granite

1202replica (average fracture hydrodynamic aperture 8.5 mm)

1203under a controlled gas/liquid volumetric flow ratio of 9.5,

1204whereas experiment C was carried out using the Stripa

1205natural rock (average fracture hydrodynamic aperture

120621.7 mm) with gas flow rate of 0.52 cm3/min (measured at

1207standard conditions) and liquid flow rate of 15.0 mL/h (the

1208gas/liquid mass flow ratio is 0.025). In both cases the

1209Reynolds numbers are much less than 1. The capillary

1210pressure was determined to be the difference between gas

1211and liquid pressures (Pcap = Pg � Pl) for both the inlet and

1212outlet of the fracture.

12134.1.1.2. Time Series Analysis
1214[67] For experiment A, periods of practically stable inlet

1215and outlet gas and liquid pressures, shown in Figure 10a, are

1216interrupted by bursts. Persoff and Pruess [1995] explained

1217that instabilities in the liquid and air pressures resulted from

1218recurring changes in phase occupancy between liquid and

1219gas at a critical pore throat. Using a time series analysis, the

1220Fourier transform plot exhibits broadband random fluctua-

1221tions (Figure 10b), and the autocorrelation function exhibits

1222cycling fluctuations (Figure 10c) caused by the pressure

1223spikes. Hurst exponents of the inlet and outlet gas pressures

1224are 0.1147 and 0.0996, respectively, implying a higher

1225random component in the outlet time series data. Figure 10d

1226shows a 2-D attractor (map) of normalized time intervals

1227between bursts (m = ti/tmax). The experimental data shown in

1228Figure 10d by solid symbols can be described by a simple

1229exponential equation, equation (16), with a small noise.

1230Using this equation, we predicted the time intervals between

1231bursts for two slightly different initial values of ti, shown in

1232Figure 10e. Figure 10e illustrates that a small difference in

Figure 9. (a) Illustration of the two-mineral reaction front
between the chemically altered and unaltered zones with the
accumulation of mineral B (shaded zones) at tips of
dissolution fingers for mineral A, showing an oscillatory
switching between two configurations, and (b) illustration
of branching of propagating fingers [Ortoleva, 1994,
Figures 7–5 and 7–17].
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1233 the initial value of ti does not affect short-term predictions but

1234 causes a significant difference in predictions several steps

1235 (bursts) ahead, while the overall long-term range of time

1236 intervals between bursts remains the same.

1237 [68] For experiment C, temporal variations of the capillary

1238 pressure exhibit quasiperiodic cycling with relatively short

1239 periods of laminar flow, which are interrupted by chaotic

1240 fluctuations, as shown in Figures 11a and 11b. The rapid

1241 drop of the capillary pressure at the end of each chaotic

1242 phase most likely indicates a liquid breakthrough at a pore

1243 throat [Persoff and Pruess, 1995]. However, the inlet and

1244 outlet cycling patterns are different. As shown in Figures 11a

1245 and 11b, the outlet capillary pressure exhibits a larger

1246 magnitude of fluctuations than that at the inlet, probably

1247 caused by a capillary barrier (pore throat) effect near the exit

1248from the fracture and a longer duration of the laminar phase

1249than that at the inlet. We can hypothesize that the observed

1250quasiperiodic pressure oscillations at both inlet and outlet

1251ends of the fracture result from a superposition of the

1252forward and return pressure waves. Theoretically, the for-

1253ward and return waves must decay in the direction of flow

1254[Rabinovich and Trubetskov, 1994, p. 228], implying the

1255dispersion of flow. Figures 11a and 11b illustrate that the

1256main patterns of the time series data sets are preserved

1257using a low-pass filter, suggesting that the noise is only

1258a small component of the data. A graph showing the

1259Fourier transformation of the time series data exhibits

1260noisy-looking, broadband fluctuations (Figure 11c). An

1261autocorrelation function indicates the phase-forgetting

1262quasi-cycles (Figure 11d), consistent with the deterministic

Figure 10. (a) Example of temporal variations of the inlet and outlet liquid and gas pressures at the inlet
and outlet edges of the fracture replica, experiment A of Persoff and Pruess [1995], identifying periods
of stable regime and chaotic bursts (note that 1 bar = 14.507 psi). (b) The fast Fourier transform plot.
(c) The autocorrelation function. (d) An attractor (map) of the normalized time intervals between bursts
(m = ti/tmax) shown in Figure 10a, where solid symbols are experimental data, line is calculated from
equation (16) with A = 30 and a = 11, and open symbols are calculated with the same A and a and a
random component of 10%. (e) Predicted normalized time intervals between bursts versus a burst number
for two slightly different initial points: 0.0197 (solid line) and 0.022 (dashed line).
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Figure 11
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1263 chaotic process (see a discussion in section 2.2 and Figure 4)

1264 and a process of mixing [Rabinovich and Trubetskov, 1994].

1265 The first local minimum of the average mutual information

1266 function (I ) versus time lag (t) occurs at t = 12 (Figure 11e),

1267 which is considered to be the time delay [Abarbanel,

1268 1996]. The time delay t = 12 is then used to determine

1269 the embedding dimension of the phase space using the

1270 FNN method. The FNN plot reaches zero at DGED = 3

1271 (Figure 11f ). For this data set, DL = 3; therefore three local

1272 Lyapunov exponents were calculated, with the largest Lya-

1273 punov exponent being positive and the smallest Lyapunov

1274 exponent being negative (Figure 11g), which are typical for

1275 a deterministic chaotic system. Both the inlet (Figure 11g)

1276 and outlet capillary pressures produce a zero Lyapunov

1277 exponent, implying that the dynamic system (flow) can be

1278described by a set of differential equations [Abarbanel,

12791996]. The Lyapunov dimensions DLyap for the inlet and

1280outlet capillary pressures are 2.849 and 2.422, respectively.

1281The correlation dimensions, Dcor, for the inlet and outlet

1282capillary pressures are 2.395 and 2.058, respectively. Note

1283that the calculation results meet the inequality criterion

1284DLyap � Dcor, typical for low-dimensional chaos [Tsonis,

12851992]. According to equation (7), for DGED = 3 the number

1286of points needed to assess the correlation dimension should

1287be at least 1585; we used a data set of 7410 points, so it

1288should produce reliable calculation results.

1289[69] The remarkable feature of the pseudo phase space

1290three-dimensional attractors for the inlet and outlet capillary

1291pressures is that these attractors have definite structures

1292(Figure 12a), and they are similar to the attractors of the

Figure 11. Temporal variations of (a) inlet and (b) outlet capillary pressures (black lines) calculated as the difference
between the gas and liquid pressures (experiment C of Persoff and Pruess [1995] using Stripa natural rock under controlled
gas-liquid volumetric flow ratio of 2) and filtered capillary pressures and noise. (c) Fast Fourier transformation (FFT) of the
time series data. (d) An autocorrelation function. (e) Average mutual information function versus the time lag, showing the
first microminimum at t = 12. (f) The false nearest neighbors (FNN) plot, showing that the FNN reaches zero at DGED = 3.
(g) Local Lyapunov exponents.

Figure 12. (a) Three-dimensional pseudo phase space attractors for the inlet and outlet capillary
pressures. (b) Attractors of the Kuramoto-Sivashinsky equation (22).
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1293 solution of the K-S equation shown in Figure 12b. This

1294 similarity implies that the fracture flow process can be

1295 described using the K-S equation (22).

1296 4.1.2. Dripping-Water Experiments
1297 4.1.2.1. Design of Experiments
1298 [70] A series of laboratory experiments were conducted

1299 in which water was injected at a constant flow rate (from

1300 0.25 to 20 mL/h) into fracture models (smooth, parallel

1301 glass plates separated by 350 mm and textured glass plates,

1302 inclined 60� from the horizontal) through a single capillary

1303 tube that terminated at the entrance to the fracture model

1304 [Geller et al., 2001]. (In these experiments we also inves-

1305 tigated the effects of the size and material of the capillary

1306 tube and the type of contact between the capillary tube and

1307 fracture model.) Liquid pressure was monitored upstream of

1308 the entrance to the fracture. It was observed that water

1309 seeped through the fracture models in discrete channels

1310 that undergo cycles of snapping and reforming, and liquid

1311 drips detached at different points along the water channel.

1312 Pressure fluctuations upgradient of the pressure sensor

1313 (Figure 13a) could be correlated to the growth and detach-

1314 ment of drips in the interior of the fracture observed directly

1315 and recorded with a video camera (Figure 13b).

1316 4.1.2.2. Time Series Analysis
1317 [71] Analysis of diagnostic parameters of chaos for these

1318 water-dripping experiments shows that all data sets contain

1319 a chaotic component. The local embedding dimensions

1320 (DL) ranged from 3 to 10, with global embedding dimen-

1321 sions (DGED) one to two units higher. The higher dimen-

1322 sionality of some of the data sets indicates either the

1323presence of high-dimensional chaos or a significant ran-

1324dom component. It was also determined that the injection

1325flow rate affects seepage behavior in a fracture. As flow

1326rate increases, the Hurst exponent linearly decreases,

1327supporting the hypothesis that seepage becomes more

1328random as flow rate increases. However, no simple,

1329consistent correlations were determined between other

1330diagnostic parameters of chaos and experimental variables.

1331Three-dimensional pseudo phase space attractors exhibit

1332definite structures, with some scattering of data points on

1333the attractor confirming that flow behavior is mostly

1334characterized by low-dimensional chaotic dynamics with

1335some random components. To demonstrate a general trend

1336of pressure fluctuations during the water injection through

1337a capillary into a fracture replica, Figure 14a shows raw

1338data (black line) and a noise-reduced curve (red line) for

1339time variations of pressure. These data were collected at

1340time intervals of 1.1 s using a rough-walled (glass plate)

1341fracture model in an experiment with water supplied

1342through a capillary tube 0.8 mm in diameter under a

1343constant flow rate of 10 mL/h. The 3-D attractor of the

1344raw pressure measurements (Figure 14b) shows a high

1345concentration of points along directions of axes, which

1346was most likely caused by noise. (Such behavior was

1347observed in laboratory experiments of water droplet ava-

1348lanches by Plourde and Bretz [1993].) The 3-D attractor of

1349noise-reduced data (Figure 14c) is geometrically similar to

1350that of the solution of the K-S equation for film flow (see

1351Figure 12b). Thus we can conjecture that a combined

1352process of intrafracture water film flow and water dripping

Figure 13. Correspondence between pressure time trend (at the entrance to the fracture model) and
drip behavior (an experiment with the flow rate of 0.25 mL/h and needle point source within smooth
glass plates separated by 0.36 mm shim): (a) pressure data, (b) expansion of the boxed section shown
in Figure 13a, and (c) frames from video tape recording of experiment showing drip behavior [Geller
et al., 2001].
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1353in a partially saturated fracture is characterized by both

1354deterministic chaotic and random components.

13554.2. Field Infiltration Tests to Characterize Unstable
1356Infiltration in Unsaturated Fractured Rock

1357[72] In analyzing the results of field infiltration tests in

1358fractured rock we must assess the effect of infiltration,

1359occurring at the surface; intrinsic fracture (intrafracture)

1360seepage and dripping, occurring within a fracture plane;

1361extrinsic fracture seepage (dripping water phenomena),

1362occurring at the intersection of a fracture with a rock cavity

1363or another fracture; and fracture-matrix interaction, resulting

1364in matrix imbibition. It is a challenging problem to distin-

1365guish between these processes, because fracture flow pro-

1366cesses cannot be measured directly under field conditions;

1367monitoring probes are not inserted directly into fractures

1368and provide only volume-averaged values of flow parame-

1369ters characterizing both the matrix and fractures. Therefore

1370the main point of our analysis in section 4.2.1 is to

1371distinguish chaos generated by dripping from a fracture

1372(associated with a capillary barrier effect) from the effects of

1373intrafracture flow and thus to determine if the intrafracture

1374flow is by itself chaotic. In section 4.2.2 we will discuss the

1375results of an analysis of the time variations of the infiltration

1376rate and the measurements of intersecting flow paths in

1377fractured rock, indicating a possibility of chaotic behavior.

13784.2.1. Basalt at the Hell’s Half Acre Field Site
1379[73] Several small-scale ponded infiltration tests were

1380conducted in fractured basalt in 1998–1999 at the Hell’s

1381Half Acre (HHA) field site (near INEEL, Idaho) using a

1382small reservoir (40 � 80 cm) constructed on the surface

1383exposure of a fracture at an overhanging basalt ledge

1384[Podgorney et al., 2000]. The ponded infiltration tests

1385included measurements of reservoir water head, flow into

1386the reservoir (used to estimate infiltration rate), flow into a

1387grid of pans beneath the overhanging ledge (used to

1388estimate outflow rate), capillary pressure and temperature

1389in the rock matrix and fractures, ambient temperature and

1390barometric pressure, and temporal and spatial monitoring

1391of dripping water (up to millions of data points) from the

1392undersurface of the ledge. It was determined that despite

1393the constant head ponded water level, infiltration rate

1394exhibited a general three-stage trend of temporal variations

1395(identical to those observed during the infiltration tests in

1396soils in the presence of entrapped air and described in

1397section 3.2), accompanied by high-frequency oscillations

1398(Figure 15a). We assume that high-frequency fluctuations

1399are mostly generated by dripping from a fracture, while

1400low-frequency fluctuations are mostly generated by intra-

1401fracture flow. To better understand the physics of these

Figure 14. Results of analysis of pressure measurements
conducted in a rough-walled fracture model with a flow rate
of 10 mL/h supplied through a capillary tube. (a) Time trend
of pressure measured at the entrance to the capillary tube.
Black line is raw data, and red line is a low-pass-filtered
data. (b) The 3-D attractor of raw data. (c) Attractor of the
low-pass-filtered data.
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1402 processes, we provided a phase space reconstruction of the

1403 infiltration and outflow rates and determined diagnostic

1404 parameters of chaos for dripping intervals. Analysis of the

1405 infiltration and outflow rates (noise-reduced trends) indi-

1406 cates almost similar 3-D attractors of spiral shapes with a

1407 few saddle points (Figure 15b), implying a possibility of a

1408 deterministic chaotic process. Analysis of water-dripping

1409 intervals reveals that water-dripping behavior at the frac-

1410 ture exit was unstable and irregular in space and time

1411 [Podgorney et al., 2000].

1412 [74] To demonstrate that dripping behavior is nonstation-

1413 ary and exhibits different types of chaos over time,

1414 Figures 16a–16e present time series of drip intervals versus

1415 the drip number, and Figure 16f shows corresponding 2-D

1416attractors for one of the dripping points at the HHA site. The

1417beginning of the test is characterized by quasiperiodic,

1418almost double-cycling fluctuations around a constant mean

1419value (Figure 16a, points 1–500), with the attractor typical

1420for a quasiperiodic regime (Figure 16f ). The following

1421slight increase in the mean value (Figure 16b, points

1422500–1100) results in a shift in the attractor. While the

1423increase in the mean dripping interval persists, starting from

1424approximately point 900 (Figure 16b), the magnitude of

1425fluctuations gradually dies out (Figure 16c, points 1150–

14262500). The next segment (Figure 16d, points 2500–4400)

1427represents a gradual increase in the periodicity of fluctua-

1428tions, followed by quasiperiodic fluctuations (Figure 16e).

1429The most interesting observation is the change in the shape

Figure 15. (a) Infiltration and total seepage rates and seepage collected by individual pans located
beneath the infiltration gallery. (b) Seepage rate collected by pans located outside the infiltration gallery
at the Hell’s Half Acre (HHA) site, test 8, 1998. (c) Comparison of 3-D attractors for the infiltration and
seepage rates (noise-reduced data) at HHA site, test 8, 1998.
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1430 of the attractor, which becomes reversed compared to that at

1431 the beginning of the test.

1432 [75] Time series of water-dripping intervals reflects gen-

1433 erally both the intrafracture flow processes (low-frequency

1434 fluctuations) and dripping itself (high-frequency fluctua-

1435 tions) generated at the fracture-air interface [Faybishenko,

1436 2002]. The low-frequency fluctuations (that are assumed to

1437 represent intrafracture flow) are described by attractors

1438 similar to those for the laboratory partially saturated fracture

1439 flow experiments and the Kuramoto-Sivashinsky equation

1440 (see section 4.1). This similarity would support the notion

1441 that intrafracture flow is deterministic chaotic, with a certain

1442 random component.

1443 4.2.2. Other Examples of Flow Instability
1444 4.2.2.1. Yucca Mountain Infiltration Tests in
1445 Fractured Tuff
1446 [76] A series of infiltration tests were conducted at Yucca

1447 Mountain to assess hydraulic processes in fractured tuff.

1448 The time variations of the infiltration rate (Figure 17a),

1449 which were measured during an infiltration test conducted

1450 at alcove 6 of Yucca Mountain [Salve et al., 2002], were

1451 used to plot a phase plane diagram as the relationship

1452 between dq/dt and q. Figure 17a shows two groups of

1453 points based on the rate of changing the infiltration rate:

1454 (1) slow motion points within an oval, representing slowly

1455 changing flow rate fluctuations, and (2) fast motion along

1456 the curves (drawn schematically), converging to the oval

1457 and representing rapidly changing flow rate fluctuations.

1458 Such attractors, which are common in describing nonlinear

1459 physical processes, are also typical for pulsation and relax-

1460 ation oscillations [Rabinovich et al., 2000]. Infiltration tests

1461 in fractured tuff show that the nonlinear dynamics of

1462 extrinsic seepage and gravity drainage processes depend

1463on several factors, such as multiple intrafracture threshold

1464effects caused by fracture asperities, matrix imbibition, and,

1465possibly, a capillary barrier effect at the water outlet

1466[Faybishenko et al., 2003b]. Moreover, it was determined

1467that the attractors for the infiltration and extrinsic rates are

1468different, suggesting that different dynamic effects are

1469involved in fracture seepage near the entrance and exit from

1470the fracture.

14714.2.2.2. Infiltration Tests in Unsaturated Fractured
1472Chalk in the Negev Desert
1473[77] Dahan et al. [2001] studied flow and transport in the

1474unsaturated fractured chalk of the Negev desert, using

1475ponded infiltration tests with tracers (tritium, oxygen 18,

1476deuterium, chloride, and bromide). They suggested that over

147770% of the water was transmitted through less than 20% of

1478the fractures. The flow rate changed drastically over the

1479ponding area, with both abrupt and gradual temporal and

1480spatial variations (Figure 18a). An important result of this test

1481is that flow trajectories connecting the surface pond with the

1482receiving samplers are likely to intersect each other, which is

1483shown in Figure 18b.Moreover, flow trajectories are dynamic

1484and not precisely repeated in the different tests at this site.

14854.2.2.3. Infiltration Tests in Unsaturated Fractured
1486Basalt in Idaho
1487[78] A series of infiltration tests at the Box Canyon site in

1488Idaho showed that under virtually the same water level in

1489the infiltration pond, flow paths in the underlying fractured

1490basalt varied and created (presumably) intersecting flow

1491paths [Faybishenko et al., 2000], further evidence of chaos.

1492Experimental results [Faybishenko et al., 2000, 2001b] and

1493numerical modeling [Doughty, 2000] of the infiltration tests

1494(with a constant head and tracer concentration boundary) at

1495Box Canyon and large-scale infiltration tests show a variety

1496of the tracer breakthrough curves (BTCs), including multi-

1497modal curves produced by migration from different frac-

1498tures. At some points, no tracer is detected, possibly

1499because initial (untraced) water may flow into dead-end,

1500nonconductive fractures easily, but it cannot continue flow-

1501ing out of these fractures, so no subsequent tracer can flow

1502into these fractures by advection. Tracer can enter saturated

1503or nonconductive fractures only by diffusion, which is a

1504relatively slow process. It is important to indicate that BTCs

1505do not correlate with the depth or lithology of the monitor-

1506ing points. Rather, the BTCs are dependent on the overall

1507geometry of the fracture pattern, including the fractures

1508above and below the monitoring location.

15105. CONCLUDING REMARKS AND PERSPECTIVES

1511[79] Instability and complexity of flow and transport

processes in partially saturated, heterogeneous soils and

1513fractured rock are induced by two key elements: (1) complex

1514geometry of preferential flow paths (as affected by rock

1515discontinuity and heterogeneity on all scales, from a rough

1516fracture surface to an irregular fracture network) and

1517(2) nonlinear dynamic processes such as episodic and

1518preferential flow, funneling and divergence of flow paths,

1519transient flow behavior, nonlinearity, film flow along frac-

Figure 15. (continued)
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1520 ture surfaces, intrafracture water dripping, entrapped air,

1521 fracture-matrix interaction, and pore throat effects. The

1522 superposition, feedback, and competition of these physical

1523 processes create a nonlinear dynamic system, generating a

1524 deterministic chaotic behavior with a random component.

1525 [80] Our analysis shows that vadose zone processes meet

1526 the criteria of a nonlinear dynamic system, as the unsatu-

1527 rated flow processes are nonlinear, sensitive to initial

1528 conditions, and generated by intrinsic properties of the

1529 system (not random external factors) and are not governed

1530 by Darcy’s law at a local scale during the periods of chaotic

1531fluctuations. Chaotic fluctuations for water pressure, flow

1532rate, and water dripping on different timescales have been

1533observed in laboratory and field experiments.

1534[81] For deterministic chaotic, intrafracture flow processes

1535the models of chaos theory can be used for accurate short-

1536term predictions of system behavior, but conventional sto-

1537chastic models could be used for long-term predictions.

1538Furthermore, deterministic chaos, in conjunction with sys-

1539tem noise and errors of measurements, creates a source of

1540irreducible uncertainty for long-term predictions. Therefore

1541the predictability of a vadose zone system cannot be signif-

Figure 16. (a)–(e) Time series and (f ) attractors of dripping intervals for dripping point 10 (HHA infiltration test 8,
1999), demonstrating different types of chaos developed over time with a corresponding shift in the attractor. Figure 16a
shows points 1–500, quasiperiodic, almost double-cycling fluctuations around a constant mean value Figure 16b shows
points 501–1100; the amount of noise increases and the attractor is shifted. Figure 16c shows points 1101–2500; the
fluctuations gradually die out and the attractor becomes a group of minor noisy fluctuations. Figure 16d shows points
2550–43500, a gradual increase in the periodicity of fluctuations, while the attractor is inverted compared to that for points
1–500. Figure 16e shows an expanded view of the portion of Figure 16d between drips 3900 and 4400. Figure 16f shows
the 2-D attractor, demonstrating the shift in the attractor’ shape over time.

Figure 17. (a) The time variations of the infiltration rate measured during the infiltration test at alcove 6
of Yucca Mountain [Salve et al., 2002] and (b) corresponding the phase plane diagram as the relationship
between dq/dt and q [Faybishenko, 2002].
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Figure 18. Design and the results of the ponded infiltration test in unsaturated fractured chalk in the
Negev desert [Dahan et al., 2001], showing (a) the temporal variations of the flow rate, exhibiting both
abrupt and gradual variations, and (b) intersecting flow trajectories connecting the pond with the water
samplers.
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1542 icantly improved by making more precise measurements of

1543 initial and boundary conditions and system parameters. The

1544 use of nonlinear dynamic methods is expected to improve

1545 our understanding of limitations on the accuracy of predict-

1546 ing hydraulic behavior in unsaturated media using conven-

1547 tional volume-averaged Darcy’s law and Richards’ equation.

1548 As time series data are more easily obtained from field

1549 observations, these parameters can then be used to assess the

1550 spatial variation of flow processes in the subsurface, which

1551 are difficult, if not impossible, to measure directly.

1552 [82] Challenging theoretical and practical problems re-

1553 main to be studied. For example, we should consider

1554 systems with multiple timescales, which may create the

1555 complex dynamics of high-dimensional state spaces arising

1556 in fracture flow processes. The remaining question is how

1557 the knowledge of nonlinear dynamics discovered in many

1558 theoretical, laboratory and small-scale field studies can be

1559 used to understand large-scale field phenomena. Other

1560 formidable practical problems would involve using theory

1561 of the chaotic processes of chemical diffusion and mixing in

1562 designing remediation schemes for contaminated sites or the

1563 effect of heat and mass transfer at the nuclear waste disposal

1564 sites. The use of nonlinear dynamics could significantly

1565 improve solutions of many practical problems, for instance,

1566 predictions of unsaturated flow and dripping water into

1567 underground openings such as caves [Genty and Deflandre,

1568 1998; Or and Ghezzehei, 2000] and a tunnel at the potential

1569 nuclear waste repository at Yucca Mountain, remediation of

1570 contaminated unsaturated rocks, and climate predictions.

1571 [83] The significance of using nonlinear dynamics in earth

1572 sciences disciplines is difficult to overestimate, because we

1573 now collect a tremendous amount of data characterizing a

1574 variety of temporal and spatial subsurface processes.

1575 Although nonlinear dynamics models could be considered

1576 as an alternative to the conventional statistical approach,

1577 they are basic to the characterization of physical phenomena

1578 encountered in unsteady hydrologic processes. However,

1579 these models are at an early stage of development. Describ-

1580 ing complex, nonlinear geophysical systems will be one of

1581 the greatest challenges facing scientists working in different

1582 fields of earth sciences well into the 21st century.
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